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Study of the shape of random walks 

S J Sciutto 
Labaratorio de Fisicn Tedrica, Departamento de Fisica, Universidad Nacional de La Plata, 
C C 67-1900 La Plata. Argentina 

Received 31 March 1994 

Abstract. A comprehensive study of the shape of discrete random walks, considering the 
general case of arbitrary length and any space dimension, is presented. The probability 
distributions for several magnitudes such as the principal inertia moments, the asphericity and the 
angle between the principal axis of inertia and the end-to-end vector are evaluated numerically. 
In most cases, and especially in low-dimensional spaces, these probability distributions spread 
widely and possess a non-zero skewness. This implies that any description of the shapes of 
random walks which is based only on mean values of related magnitudes is incomplete. This 
situation does not vary when random walks of large lengths are considered since the relative 
fluctuations (ratio between lhe standard deviation and the mean value) do not go to zero in 
that limit. On the other hand, when the space dimension grows, the distributions become 
more peaked, reaching the expected asymptotic limit for infinite dimension. The present 
study also indicates that the probability distributions for the principal inertia moments have 
approximarely the form of chi-squared distributions. Analysing the probability distribution for 
the asphericity, it is shown that the distributions for the different moments are not completely 
independent. 

1. Introduction 

Random walks and related objects are of interest in many branches of physics such as the 
theory of polymer molecules [l]  or quantum field theory [Z]. In particular, the problem 
of determining the characteristics of the shapes of random walks has been of interest to 
scientists for many years and motivated a number of works [3-91. In the pioneering papers 
of [3] an analysis was made of the mean values of the principal inertia moments for three- 
dimensional random walks, obtaining the result that they are not in the proportion l:l:l, 
immediately suggesting a non-spherical shape for these objects. This result triggered a 
series of analyses [3-91 trying to determine the origin, characteristics and implications of 
that property of random walks. Particularly, the interest in giving a more precise quantitative 
measure of the shapes of these objects motivated the definition of other magnitudes. An 
important example being the asphericity, introduced some time ago [lo]. This scalar quantity 
takes values in the interval IO, I], 0 for a perfectly spherical object and 1 for a rod-shaped 
one. In [IO] it was explicitly shown that a quantity similar to the mean value of the 
asphericity is not zero for unreshicted random walks in spaces of arbitrary dimension, a 
result that leads once more to the conclusion that random walks do not possess a spherically 
symmetric shape. 

In [5] it was shown that in an infinite-dimensional space, all open unrestricted random 
walks possess the same shape. In the case of large but finite dimension, the shapes 
(quantitatively measured by some quantity like the asphericity, for example) will distribute 
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around a most probable shape. The distribution will present a peak around the most probable 
configuration whose sharpness decreases when the dimension is lowered. 

In a more recent work [7], qualitatively similar results were obtained when 
studying other kind of random walks-like self-avoiding ones, for example-and/or other 
magnitudes, i.e. the angle between one of the principal inertia axes and the end-to-end 
vector. 

The method used in most of the previously mentioned works consists of the evaluation 
of mean values of certain magnitudes (inertia moments, asphericity, etc). In general, the 
study of other statistical parameters like the deviations around the mean, the most probable 
value, etc, is omitted. 

In cases like, for example, thermodynamical systems, mean values can describe 
adequately the behaviour of the corresponding magnitude because the relative fluctuations 
(ratio between standard deviation and mean value) vanish in the limit of infinite system 
size. However, it has not been shown that something similar to such a limit in the problem 
of determining the shapes of random walks exists. 

It would, therefore, be important to perform a complete study of the different statistical 
parameters in order to acquire a detailed description of the shape (or distribution of shapes) 
of a set of random walks. 

The main scope of this work is to present a comprehensive study of the shape of 
random walks. We make the analysis of unrestricted discrete random walks of arbitrary 
length in spaces of different dimensions. Our study is mainly focused on the probability 
distributions of different magnitudes, namely, the principal inertia moments, the asphericity 
and the angle between the principal axis of inertia and the end-to-end vector. It should be 
mentioned, however, that in the case of Gaussian (not discrete) random walks, there exist 
previous works which study the probability distributions of related quantities. For example, 
reference [4J contains an analytical study of the probability disnibutions of the principal 
inertia moments of two-dimensional rings; in reference [8] there is a detailed study of 
probability distributions for the asphericity of unrestricted and self-avoiding random walks 
in three dimensions, and finally reference [ 111 reviews the theory of the distribution function 
of the radius of gyration (see below) of Gaussian random walks in a three-dimensional space, 
In this last work [ 111 no explicit mention is made of the non-spherical shape of the random 
walks; and none of the works [4,8, 111 consider explicitly the case of discrete random 
walks. 

Among other results, we find that all the magnitudes considered present broad 
distributions with significative fluctuations and non-zero skewness, especially for low spatial 
dimension (two or three). When the dimension is increased, the distributions become sharply 
peaked around a single most probable value, in concordance with reference [6]. 

Even if some of the cited works study the ratios between different inertia moments, 
we are not going to consider such quantities here because they are not practical 
when considering spaces of more than three dimensions and the results obtained from 
analysing them are not likely to be qualitatively different from the ones presented in this 
work. 

Our paper is organized as follows. In section 2 we define the different magnitudes used 
in the calculations and discuss some analytical results for the limit of infinite dimension. In 
section 3 we describe the numerical method used and present the results obtained, including 
the analysis of the probability distributions, the comparison with analytical models, and the 
study of mean values and dispersions. Finally, in section 4, we state our conclusions and 
final remarks. 



Study of the shape of random w a l h  7017 

2. Describing the shape of random walks 

Let us consider a random walk of s steps in a d-dimensional space. If ro = 0 is the initial 
position and r,, 01 = 1,. . . , s (rol ( ~ 1 ~ .  xk,. . , , xdo l ) ) ,  represent the positions within the 
walk, we can define the random walk stating that 

(1) 
where e,, 01 = 1,. . . , s, is a random step vector. We shall consider for simplicity discrete 
unrestricted random walks with coordination number 2d. Therefore, if B = {el, e 2 ,  . . . , e d ]  

is an orthonormal basis for the d-dimensional space, E, may be any of the vectors 
&el, &ez,. . . , i e d ,  each one with probability (U)-'. 

r, = r , -~ + .% 

For such a random walk we can define the centre of mass 

and the inertia matrix 

(3) 

This matrix is symmetric and positive definite. It possesses d positive eigenvalues 
AI  2 A2 2 . ' '  2 Ad, and an orthogonal set of d eigenvectors U*, k = 1 , .  . . , d such 
that TU* = h k u k .  

The trace of the inertia matrix is a well known magnitude called the radius ofgyration 

(4) 

which gives a quantitative measure of 'how large' the random walk is. For fixed s, S2 takes 
values from (almost) zero to a maximum S,?& The upper bound for S2 can be evaluated 
in the following way: from (2)-(4) it follows that 

1 T.. - r j  - ~ C ( X i u  - XCM~)(X,W - X C M ~ )  1 < i < d 1 < j < d .  
s + ' cl-0 

d d 
S2 = ~ T M  = EA* 

k=l k=l  

From (1) it follows that for 01 2 1 

where all the vectors e,, a = 1. . . . , s, are unitary. Replacing into (2) and operating 
conveniently, the centre of mass can be expressed in terms of the vectors E,: 

Using (6) and (7) to replace r, and r C M  in (3, and performing some algebraic manipulations, 
one obtains 

with 
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for all s 2 2; for s < 2 CZ = 0. The scalar products E .  €8 are less than or equal to one 
for all ci and j3 since the step vectors E, are unitary. Therefore, it is evident that 

From (8) and (10) it follows that the radius of gyration possesses the following upper bound: 

(11) 
Equations (8)-(11) are valid for all space dimensions, path lengths and coordination numbers 
(they are valid also in the continuum), provided that the step vectors are unitary. Notice 
also that S k  is equal to the largest inertia moment of a rod of length s. 

For an object with spherical shape the inertia eigenvalues are equal. In order to show 
that the random walks belonging to a given set possess a non-spherical shape, one must 
establish that these eigenvalues are somehow different. Many derived magnitudes can be 
defined which are useful to this purpose. A relevant example of such a magnitude is the 
usphericity defined by [lo]: 

s 2 < s k  = hs(s + 2 ) .  

It possesses the following properties: (i) 0 < A 6 1, (ii) A = 0 for spherical shape, and 
(iii) A = 1 for a rod-shaped object. 

It is worthwhile mentioning that the present definition for the asphericity differs slightly 
from the usual one [IO], where A is defined as a ratio of mean values. The reason to take 
our alternative definition is that it permits the calculation of a probability distribution for the 
asphericities of a given set of random walks which gives a much more complete information 
than a single scalar parameter. 

We want also to mention that it is not difficult to demonstrate that the asphericity can 
be put in the following equivalent form: 

which is particularly adequate for numerical calculations. 

path ends and the inertia axis corresponding to the largest eigenvalue A i  [7]: 
It is also interesting to study the behaviour of the first quadrant angle, Q, between the 

The angle 0 will present an uniform distribution in the interval [0, 4.1 if there are no 
correlations between r, and U]. 

Notice that when we refer to some property of random walks, such as the 'shape', we 
are speaking about a statistical analysis over a population of random walks. There are 
K = (2d)" possible random walks of length s in a d-dimensional space. If the walks are 
generated completely at random (like in a Monte Carlo simulation, for instance), each single 
random walk possesses a probability 1 /K of being generated. Given a certain magnitude 
X defined for each random walk (such as the principal inertia moments, the asphericity, 
etc), it is possible to define a probability distribution for X, P x ( x )  with x real, such that 
Px ( x )  dx gives the probability that x < X 6 x + dx. To evaluate P x ( x )  dx one just needs 
to count the number of random walks which verify the condition x < XRW < x + dr and 
divide it by K .  
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In a Monte Carlo simulation, a large number N of independent random walks is 
generated. N should be large enough to allow the set of random walks obtained be 
a representative sample of the entire population. Then a probability distribution can be 
estimated building a frequency histogram for the corresponding magnitude. We generally 
will not distinguish explicitly between a theoretical probability distribution and its statistical 
estimation. 

2.1. The d + 00 case 

There is a particular example which clearly illustrates that random walks are not spherical 
and that there are correlations between r, and U,. It is the case of very large dimensions: 
d + 00, d >> s. 

Let us divide the random walks into two subsets: (i) all random walks such that the 
vectors E,,  01 = I ,  . . . , s, are linearly independent, and (ii) the remaining random walks. Let 
ni be the number of elements in subset i (i = 1,2). We immediately see that n l  +nz = K .  
Let pi be the probability of generating a random walk belonging to subset i, then pi = n i / K ,  
i = 1,2. 

It is possible to demonstrate [5] that in the limit d -+ 00, nz/nl + 0, pI -+ 1, and 
p2 -+ 0. In other words, in this limiting case all random walks that appear with finite 
probability (i.e. in a Monte Carlo simulation) belong to subset 1. 

It is also possible to demonstrate [SI that all the random walks belonging to subset 1 
can be mapped one onto any other by a combination of rotations and reflections. Since 
rotations and reflections keep unchanged distances and angles, it follows that all these 
random walks possess the same principal inertia moments, asphericity and angle 0, among 
other magnitudes. 

One of the random walks which belong to subset 1 is that whose steps vectors are 
E .  = eo,, (Y = I , .  . , , s. It is not difficult to evaluate and diagonalize the inertia matrix 
of such an object, and therefore of any element of subset 1. In the case d >> s >> 1 the 
corresponding eigenvalues and eigenvectors are given by [5 ]  

and 

respectively. 
For large s one can safely replace sinx = x in (15) to get 

(17) 
S 

h k  z - 
x2k2 

k = 1,2,. . . . 
A direct calculation permits us to evaluate the asphericity in the present case. From 

(13) and (17) 

which for d -+ 00 and s >> 1 reduces to 
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where [ ( x )  is Riemann's zeta function. 
0 can also be evaluated straightforwardly, 

Jz sin' ( x / 2 )  
s sin(Jc/&) 

- 2Jz Z 0.9003 

- _  - 

Jc 
that is, 

0 E 0.4503 radians = 25" 48'. (21) 
Observe that since we are considering the limit d >> s >> 1, results (19)-(21) do not 

depciid on d and/or s. It is also important to notice that an analytic calculation of the 
asphericity (defined as a ratio of mean values) was presented in [ 101, considering similar 
conditions for the random walks but without imposing any restriction on d .  The result 
obtained there, ( A )  = 2(d + 2)/(5d + 4), reduces to the result of (19) for large d .  as 
expected because in this limit there is only one possible value for A which is, of course, 
equal to the mean value ( A ) .  

2.2. Large butfinite d 

For large but finite d,  pz  is different from zero and random walks with different shapes 
can appear. Therefore the different magnitudes will not take a definite value. If d is large 
the corresponding probability distributions will be sharply peaked around a certain value, 
approximately equal to the value for the d -+ 00 case already considered. 

In this case the probability distribution for the principal inertia moments takes the form 
of a chi-squared distribution [6] 

where 
-2 1 kn 

aok  = - [sin(-)] 
4(s + 1) 2(s + 1) 

Imposing the normalization condition 

l m P k ( A ) d h  = 1 I < k < s  (24) 

the normalizing constant wk can be written in terms of a Gamma function: 

To evaluate the probability distribution of any magnitude G(hi ,  . . . , Ad)-a function 
of the eigenvalues ha, such as the asphericity, for example-one needs the combined 
probability distribution Q@I,  . . , , A,) (r = min(d. s)) of the non-zero eigenvalues. If 
Pc represents the probability distribution for G, then 
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where S ( x )  is Dirac's delta distribution. 

such a hypothesis, Q can be put in the following form: 
It is usual to assume that the probabilities for the different &'S are independent. Under 

Q(h, ..., h,) = f i P k ( h t ) .  (27) 

Even with this assumption it is not possible, in general, to evaluate the distribution (26) 
for quantities such as the asphericity (see [6]). In practical cases it has to be evaluated 
numerically. 

The quantities introduced in this section, the associated probability distributions and 
their respective parameters, are useful to describe, with acceptable detail, the shape of 
random walks. The next sections are devoted to their analysis. 

, = I  

3. Numerical simulations and their results 

The Monte Carlo simulations were performed under the following conditions: keeping d and 
s fixed, a large number N of statistically independent random walks with the characteristics 
of the already defined in section 2 were generated. For each random walk, the eigenvalues, 
A I , .  . . , A d ,  the eigenvectors, U,, . . . , U d ,  the asphericity A and the angle 0 were evaluated. 
The N samples obtained in this process were used to perform several statistical analysis. 
In almost every calculation we have N lo5. 

3.1. The inertia moments 

Let us begin the study of the numerical data by considering the probability distribution for 
the principal inertia moments, hk. In figure 1 we can see a typical example; the case d = 3, 
s = 100, k = 1. The histogram plotted as a full curve represents the Monte Carlo data. The 
dotted curve represents a similar histogram corresponding to the probability distribution of 
(22). We were very careful when normalizing both histograms. In fact, we proceeded as 
follows: 

(i) a certain number of frequency intervals [ x i .  x i + l ) ,  i = 1 , .  . . , m ,  such that [XI. x,+l] 

represents the region of interest of the respective variable (Al in the present case), is defined. 
(ii) The N Monte Carlo samples are used to evaluate them frequencies 5 ,  i = 1, . . . , m, 

which represent the number of times the variable happened to lie in the corresponding 
interval [ x i ,  xi+]). These frequencies are normalized to make their sum equal to one: let 
hi, i = 1 , .  , . , m, be the normalized frequencies, then 

(iii) A certain number N', (N'  = N in most of our simulations) of pseudo-random numbers 
distributed accordingly with the theoretical distribution (22) is generated, and processed 
similarly to the Monte Carlo data of the previous step, using the same frequency intervals 
defined at step (i). Frequencies fi, i = 1, , , , , m. and normalized frequencies 

(29) 
5' cy=, f j '  

hi = - 

are evaluated as in step (ii). 

single graph. 
(iv) The normalized frequencies hi (full curves) and hi (dotted curves) are plotted in a 
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2.0 
h 

R 
v 

i 
0 z 

0.0 
0 10 20 30 40 50 

inertia moment # I 

Figure 1. Frequency histograms for the largest inertia 
moment, A I ,  in the case d = 3, t = 100. The histograms with 
full cumes correspond to Monte Carlo data. The histograms 
in dotted C U N ~ S  correspond Lo the distributions of (22) (small 
dots), and (31) (large dos). All the histograms are normalized 
accordingly with (28) and (29). In all cases N = N' = 3 x IO5. 

As we can see in figure I, the agreement between the two histograms is not complete. 
This is not surprising since (22) is obtained under the assumption d >> s >> 1 which 
certainly is not verified in the present example. It is worthwhile mentioning that the same 
case was analysed in  161, albeit evaluating amuch smaller number of samples ( IO4)  than in 
our simulation. In that work both histograms seem to present a remarkably close agreement 
[6, figure 101. It is unclear to us, however, how both curves were normalized, and whether 
or not both normalizations are compatible with a probability distribution normalization, i.e. 
equation (24). 

We compared the Monte Carlo distributions for different eigenvalues hk and noticed 
that the probability distribution of (22) approximates well the simulation data just in those 
situations where d is sufficiently large. In general, the histogram corresponding to the 
distribution (22) differs from the Monte Carlo distribution and this also implies that there 
are differences between the mean values (A) and standard deviations UA corresponding to 
each distribution. We were interested in obtaining a modified probability distribution whose 
mean and standard deviation will fit the Monte Carlo results. To ttiis end, consider a 
variable h distributed accordingly with equation (22). Its mean value is equal to a'ok and the 
corresponding squared standard deviation is 2or;k/d. It is possible to modify these quantities 
in order to get a better approximation to the Monte Carlo data: we replace a'ok and d /2  by 
two new parameters ax and vk, respectively, such that 

a'? 
(30) (A) = C Y ~  and uA 2 -  - -. k 

vk 
The probability distribution which verifies these conditions is a chi-squared distribution: 

In the limit d >> s >> 1 these parameters should approach c4 -f a'ok and vk + d / 2 ,  
respectively. 

An additional justification for choosing a distribution of the form (31) as the probability 
distribution of the inertia eigenvalues can be obtained from [6]. To fix ideas, let us consider 
the case of parameter at. In [6] a I / d  series expansion is obtained for the mean value of 
the principal inertia moments 
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Using (30) and (32), our new parameter (Yk can be equated to the sum of a series whose 
zeroth-order term is the asymptotic value a0k. A similar argument can be used with uk 
and d / 2  using the series expansion for U$ (see [61). Therefore the distribution (22) can be 
regarded as a 'zeroth-order' asymptotic approximation to the more general equation (31). 

The external parameters ak and vx can be easily adjusted from estimators m and A? for 
(A) and U$ respectively-obtained from Monte Carlo data, for example. ak and Vk can be 
immediately evaluated via 

m2 
A2 ' 

Vk = - ak = m (33) 

Of course, this is not the only way to adjust the parameters; we have chosen it due to 
its simplicity and because the resulting distribution possess the correct mean and standard 
deviation, and the resulting distributions represent adequately the true ones in a large number 
of cases. 

In figure 1 we also display the histogram corresponding to distribution (31) (large dots). 
It is evident that the modified distribution agrees better with the Monte Carlo data than the 
one of (22). In this case we obtained a1 = 12.83, V I  = 2.49, using (33) with m and A taken 
from our Monte Carlo data. These figures differ significantly from the values a0.1 = 10.13 
and d / 2  = 1 used in the distribution (22). 

The distribution (31) s e e m  to be adequate also for k # 1. In figure 2 we can see 
the case d = 3, s = 100, k = 3. Here the distribution (22) separates significantly from 
the Monte Carlo data (small dots) while our modified one gives quite good agreement for 
a3 = 1.08 and uj = 5.95 (large dots). In this case ( ~ 0 . 3  = 1.13, which is close to 013: the 
difference between both distributions comes from the value of the parameter 113. 

Other representative cases are shown in figure 3 where the Monte Carlo distributions 
(full curves) as well as the adjusted distribution (31) (dotted curves) are displayed. Here 
we can see that for larger values of d both histograms show an excellent agreement. Notice 
also how the distributions become more peaked when d grows. 

It is found that when d grows the parameters ak and uk tend, as they should, to 
their asymptotic values: for example, figure 4 shows the case s = 100 k = 1. Here 
( Y ~ / C Y ~ , ~  (circles) and 2ul/d (triangles) are plotted versus d .  It shows up clearly that, 
when d grows, both curves approach the correct limit. The parameters were evaluated 
using (33) with estimators calculated using our Monte Carlo data. The convergence 
speed of these parameters to their asymptotic values, when d --t 00. may depend on k .  

x 
2 2.5 

e2.0 

1.5 

z 1.0 m 

0.5 

0 .0  

s 
aJ 
i 
L 

0 
N 

0 
2 

0 1 2 3 4 5  
Inertia moment # Figure 2. Same as figure I ,  but for moment A) 
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E 0.4 

z 
0.0 

N 

a 
.- - 
5 

d=30 
s = l O O  

0 m~ Inertia 5 10 moment 15 20 # 25 1 

3.0 

5=100 

9) 

.k 1.5 

m 
$0.5 
0 z 
0.0 

0 5 10 
inertia moment # 2 

0.0 0.2 0.4 0.6 
Inertia moment # 6 

d=30 
5=100 

k 
1.5 

m 

0 z 
0 .0  

0.0 0.2 0.4 0.6 
Inertia moment // 6 

Figure 3. Frequency hiXograms for the inertia momens: (n) A 1  and (b) A*, in the case d = 2, 
s = 100; ( c )  A, and ( d )  A6. in the case d = 6. I = 100: (e) A I  and (f) A &  in the case 
d = 30. s = 100. The histograms in full (dolted) curves correspond 10 Monte Carlo data 
(distribution (31)). AU the histograms are normalized accordingly with (28) and (29). In dl 
cases N' = 3 x IOs; N = 3 x ios in cases (a)-(d) and N = 1 .S x 10' io cases (e) and U). 
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3 0  Figure 4. w/uo,I (circles) and 2 q / d  (triangles) 
plolted versus d fors = 100. The lines are only to 

10 20 

Spatial dimension guide the eye. 

n n  i 
0 10 20 30 0 10 20 30 

Mom. label Mom. label 

Figure 5. ( a )  uJuot and (b )  2v&/d plotted versus the moment label k (k = 1 . .  . . , d )  for 
d = 30 and s = 100, The broken cumes indicate the expected value of these magnitudes in the 
limit d + CO. 

In figure 5 we display the values of ( a )  ruk/ruox and (b)  2vk/d versus k for d = 30. 
s = 100. There one can clearly see that both magnitudes are close to one just for the 
first two or three values of k .  For larger values of k ,  f f k  remains more or less close 
to its asymptotic value but vk separates significantly from the value d / 2 .  For k near 
to d ,  both crk and ut are less than f f O k  and d / 2 ,  respectively, at variance with the case 
k = 1 where both magnitudes remain greater than their respective asymptotic values for 
all the cases that were considered. This leads to the conclusion that the distribution (22) 
agrees adequately with the true distribution only when the condition d >> s >> k us 1 
holds. 

We have also performed simulations for random walks with different lengths. The 
corresponding histograms do not differ qualitatively from the respective ones for s = 100. 
To illustrate this, we display in table 1 the mean values of hl divided by s and the 
corresponding standard deviations. The table also includes the number N of Monte Carlo 
samples that were calculated in each case. The quantities in brackets indicate the error in 
the last two digits displayed. The errors are taken as twice the standard error of the mean, 
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Table 1. Mean value and standard deviation of the largest inertia moment, hr. divided by S. the 
number of steps in the random walk: tabulated for various values of d and S .  The number N of 
Monte Carlo samples is also displayed. The quantities in brackets indicate thc m o r  in the kat 
two digits displayed. The errors correspond to twice the standard e m r  of the mean (equation 
(34)). 

2 IOz 300 
IO‘ 300 

3 IO2 300 

6 IO’ 300 

30 10’ 150 

I06 1 

I04 200 

104 100 

io4 2 

0,14028 (37) 
0,13873 (37) 
0.1374 (60) 

0.12829 (30) 
0.12720 (37) 

0.11566 (21) 
0.1 14 53 (36) 

0.10478 (13) 
0.1033 (12) 

0.101 2 
0.101 3 
0.095 I 

0.081 27 
0.081 64 

0.057 59 
0.057 54 

0.026 04 
0.026 19 

A@, related to the standard deviation viat 
U 

A p = -  JF (34) 

We can see that, for fixed d ,  ( i l ) / s  and UA,/S do not depend significantly on s. However, 
in all the tabulated cases s is greater (or much greater) than d. When s < d the means and 
standard deviations may depend on s. 

For s fixed and d -+ 00 the standard deviations go to zero accordingly with (30) (uk 
increases when d grows). Furthermore, it is not difficult to see that the standard deviation 
verifies approximately the law U = constant/& This is consistent with the fact that 
Vk + d / 2  with d -+ CO. 

In table 2 we present some representative values for parameters cuk and uk. As explained 
below, they were obtained using data from our Monte Carlo simulations. We can see that 
these parameters present a slight variation when s changes from lo2 to IO4. Notice that 
the ratio cua/olok can also be evaluated using the series expansion (32). It is not difficult to 
verify that the first-order prediction olk /o lOk = 1 + 3/(4d) gives reasonable results only for 
very low values of k (1 or 2). 

Another remarkable feature of the probability distributions of the principal inertia 
moments is that they possess a non-zero skewness (the mean value is not equal to the 
most probable one), especially for low values of d. Consider, for instance, the case d = 3. 
s = 100: here (11) and the corresponding most probable value differ in about 0.7 times the 
standard deviation UA, . 

This property of the distributions becomes important when trying to describe apriori the 
shape of a random walk the most probable value is not equal to and must be distinguished 
from the mean value. Sometimes (see, for example, [7]) this difference is not clearly stated. 

3.2. Other magnitudes 

We have also studied the probability distribution of the asphencity and the angle 0 for 
several values of d and s. 

t The standard error of the mean and the standard deviation of the corresponding distribution are different quantities 
which should not be confused (see [7] for instance). This is explained in most textbook on statistics (see [12], 
for example). 
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Table 2. F’arnmeter ratios a&ox and 2vkld (as obtained from (33) with data coming from 
our Monte Cxlo simulations: tabulated for representative values of d, s and k. In all case5 the 
number N of Monte Carlo samples is mater than IO5. 

d s k % h k  2Vkld 

2 IO2 I 1.3707 1.9227 
10’ 2 1.1083 3.2194 
IO4 I 1.3690 1.8769 
IO4 2 1.0972 3.1012 

3 IO2 1 1.2535 1.6614 
10’ 2 1.1361 2.7559 
10’ 3 0.9480 3.9698 
IO‘ 1 1.2553 1.6184 
IO‘ 2 1.1323 2.6596 
IO‘ 3 0.9396 3.7764 

6 IO’ 1 1.1301 1.3443 
10’ 2 1.1060 2.0109 
10’ 6 0.7951 5.3292 

30 10’ 1 1.0238 1.0791 
IO’ 6 1.0135 2.8277 
IO2 30 0.1765 0.0319 

In figure 6 we display the probability distribution for the asphericity in several 
representative cases. The full curves correspond to the Monte Carlo data, while the 
dotted ones correspond to frequency histograms built using an auxiliary Monte Carlo 
process to simulate the probability distribution for the asphericity (equation (26)), taking 
the combined probability (27) as a product of distributions of the form (31). This auxiliary 
process consists in the generation of a large number of sets of random numbers el, . . . , zr 
(r = min(d,s)), each one distributed accordingly with the distribution (31), with the 
parameters corresponding to A I ,  , , . , A,, respectively. Then each set of numbers is used 
as input for (13) (taking A,+r = 0,. . . ,Ad = 0 when necessary) in order to obtain a sample 
for the asphericity. The set of samples is processed to build a histogram, which constitutes 
a numerical estimation of the distribution (26). All histograms in figure 6 were normalized 
as explained in section 3.1. 

We can observe broad distributions, especially for low values of d, with the following 
remarkable characteristic: for d = 2 the probability distributions for the asphericity are 
different from zero at the origin, whereas they vanish at this point for all d > 3. In other 
words, there is a finite probability of generating a random walk with A very close to zero 
just for d = 2 while for d > 3 this probability vanishes. Similar contrasts between the 
d = 2 and the d > 2 cases can be found when considering other properties of random 
walks, like the probability of returning to the origin [13], for example. 

When d grows, the distributions become more peaked and approach the limit of infinite 
d already described in section 2.1. For example, figure 7 shows the case d = 30, s = 10. 
We can clearly see the peak at the most probable value, which is approximately equal to 
the limit of A ford  + 00 (equation (19)). Notice that the distributions possess a non-zero 
skewness, especially for low values of d (see the related remark in the previous section). 

For increasing s the distributions do not alter significantly, as can be inferred from the 
data of table 3. In this table the mean values of A and 0 were tabulated for several values 
of d and s. The number N of Monte Carlo samples used is also included. The quantities in 
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Figure 6. Frequency histograms for Ihe sphericity A, io the c s e s  s = 100 and d equal 
to ( a )  2, ( b )  3, ( c )  6 and ( d )  30. The full curves correspond to the resulo of the Monte 
Carlo simulations while the dotted ones carrespond to the auxiiivy Monte Carlo simulation 
of disuibution (7.6) for the sphericity. (The combined probability distribution Q is taken tu 
products of disbibutions of the form of equation (31).) The dotted histogram in the d = 2 case 
represents the distribution (38). All the histograms are normalized accordingly with (28) and 
(29). In all cases N' = 3 x IOs; N = 3 x IO5 in cases (a)+) and N = IOs in case (d). The 
point A = 0.4 corresponds to the asymptotic value of (19). 

brackets indicate the error in the last two digits displayed (see equation (34). For d fixed, 
both the mean value { A )  and standard deviation UA tend to a definite value for s + 00. For 
s fixed and increasing d the standard deviations diminish, as expected. It is not difficult to 
verify that the standard deviations vary with the law 

U E constant x d-"' (35) 

with w % 0.45. 
The Monte Carlo histogram of figure 6(b) should be compared with a similar one 

presented in [8] for Gaussian random walks of length s = 1024 [8, figure 11. It is possible 
to see that there is a good agreement between both distributions. A qualitatively similar 
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Table 3. Mem value and standard deviation of the asphericity, A. and the angle between the 
principal axis of inertia and the end-to-end vector, e, together with the corresponding stmdard 
deviations. tabulated for various values of d and s. The number N of Monte Carlo samples is 
also displayed. The quantities in brackets indicate the ermr in the last two digits displayed. The 
errors correspond to twice the standard error of the mean (equation (34)). 

d s N ( x 1 0 3 )  ( A )  a* (Q) UQ 

2 IO 300 0.38563(86) 0.235 1 0.413 l(16) 0.4400 
10’ 300 0.39381(86) 0.2354 0.4112(14) 0.3873 
103 300 0.39535(86) 0.2363 0.41?2(14) 0.3810 
104 300 0.39586(86) 0.2360 0.4130(14) 0.3805 
IOS 300 0.39616(86) 0.2360 0.412 l(14) 0.3807 

3 IO 300 0.39007(69) 0,1890 0.425 l(13) 0.361 4 
IO’ 300 0.39236(69) 0.1892 0.4690(13) 0.3503 
103 300 0.39421(69) 0,1897 0.4759(13) 0.3525 

6 IO 300 0.39900(51) 0.1383 0.40856(94) 0.2566 
IO’ 300 0.39250(51) 0.1399 0.48061(97) 0.266 I 
103 300 0.39387(51) 0.1400 0.48779(98) 0.2676 

30 10 100 0.41094(41) 0.06535 0.36?97(55) 0.08675 
102 100 0.39773(43) 0.06796 0.44598(58) 0.091 62 
103 20 0.398 14(96) 0.06789 0.4546(13) 0.09286 

h 

v 
R 20 

O’O o’2 0’4 o ’ 6  l.o Figure 7. Same as figure 6, but for the cased -30, s = IO. 
N’ = 3 x IO’, N = 10’. Asphericity 

histogram is obtained from the simulation of self-avoiding Gaussian random walks [S,  
figure 81. These two facts reinforce the idea of universality in the shape properties of  
random walks [SI. 

When looking at the dotted histograms which correspond to the distribution (26) in 
the case of the asphericity, we can see that in general there is an acceptable, but not 
complete agreement. This shows up clearly in the case d = 2 where both distributions 
differ significantly and in the case d = 30. s = 10, where the ‘theoretical’ distribution does 
not predict the peak at A Z 0.4. 

We have analysed the reasons for such behaviour to conclude that there are two main 
sources for the disagreements: (i) the independence assumption of (27) does not hold 
exactly, especially for low d. Observe, for example, that in  the d = 2 case mentioned, the 
distributions for the inertia moments (figures 3(a) and (b))  present a good apement  with 
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the true ones, while the combined probability (equation (27)) gives a manifestly discordant 
distribution for A (figure 6(n)). (ii) When s d and especially when s Q d, the probability 
distributions for Ah with k % r are discrete (just a few isolated values of 11 possess a 
non-zero probability) and it remains clear therefore that this kind of distributions cannot be 
adequately described in terms of a chi-squared distribution. 

The fact that the combined probability distribution of (27) does not hold exactly can 
be understood simply. When defining the principal inertia moments as the eigenvalues of 
the inertia matrix (3), the assumption A1 2 A2 2 . . . > Ad was made. This imposes, by 
construction, the constraint 

Apart from this, there are other restrictions that can be imposed a priori. For example, from 
(4) and ( I  1) it  follows that Q must be zero when A I  + . . . + A, > S k .  These conditions, 
which imply that the different inertia moments are not independent, are certainly not verified 
by the distribution (27), especially in the cases when the different distributions Pk(A) overlap 
significantly among themselves. 

Looking at the distributions of figures 1-3 one can  notice that the overlaps between 
distributions are significant for low values of d, and tend to zero as d increases (see the 
different scales used in the horizontal axes). Therefore, one can clearly understand the reason 
for the failure of the distribution for the asphericity described previously (figure 6(a)). 

In this particular case of two dimensions, it is possible to evaluate analytically P A ( x ) .  
The details of the calculations can be found in the appendix, and the result is 

where x E [O. 11 and p ( x )  is defined in (A6). Notice that @ ( x )  < 1 and then if the 
constraint (36) is in effect, the first term in the integrand vanishes identically, and the 
distribution reduces to (A8). 

If one uses the distribution (27) in (37), then P A @ )  takes the form (see appendix) 

+ 
It is not difficult to see that, for x -+ 0, PA(x) can be witten as follows: 

This equation tells us that P a ( x )  is divergent when x + 0. In figure 6(a) we can clearly 
see this divergence in the dotted histogram (which was obtained after an auxiliary Monte 
Carlo simulation of distribution (38)). The comparison of the distribution (38) with the 
auxiliary Monte Carlo simulation provided us with a powerful check for the procedure. 

We can describe in similar terms the behaviour of the probability distribution for the 
angle 0. In figure 8 we can see some examples of such distributions. We display only 
the Monte Carlo data, since a probability distribution for 0 cannot be obtained from the 
probability distributions (22) or (31). 

Notice that for low values of d all the distributions are broad, present a non-zero 
skewness and vanish (do not vanish) for 0 = 0 when d 2 3 (d = 2). 
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Figure 8. Frequency histograms for the first quadrant angle B between the principal inertia 
axis (associated with moment AI) and the end-lo-end vector r,, in the cases: (a) d = 2, 
s = 100; (b)  d = 3, s = 100; (e)  d = 30, s = 100; ( d )  d = 30, s = 10. AU the histograms 
are normalized accordingly with equations (28) and (29). In cases (a),  (b) N = 3 x 10'. 
and in a s  (c),  ( d )  N = 10'. The triangle in the 0 axis indicates the asymptotic value of 
(21). 

For large d the probability dishibution peaks around a central value. For example, in 
figure 8(d) we present the case d = 30, s = 10. The peak is very near to the point which 
corresponds to the limit d -+ 00 (equation (20)). This effect can also be detected analysing 
the corresponding data of table 3: the standard deviations verify a law of the form (35) 
with w = 0.55. 

In connection with the study of angular correlations of 171, the results already 
described lead to the conclusion that in the case of low dimension there a e  no strong 
correlations between the end-to-end vector and the principal inertia axis, independently 
of the length s of the random walks. For instance, in the d = 3 case, the relative 
fluctuation U@/(@) is approximately equal to 75% for all the lengths considered (see 
table 3). Similar conclusions apply to the case of other angles [7] used to study 
correlations. 
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4. Conclusions and  final remarks 

We have performed a detailed study of the behaviour of the probability distribution of 
several magnitudes defined on open random walks in discrete spaces with coordination 
number equal to four, with the main purpose of analysing the shape of these objects. The 
selected magnitudes, largely used in previous related works [3-IO], are: the principal inertia 
moments, A I ,  . . . , h d ,  the asphericity, A ,  and the angle 0 between the principal inertia axis 
and the end-to-end vector. 

In general, the distributions spread widely around a single most probable value. In 
many cases this value differs significantly from the corresponding mean value due to a 
non-zero skewness of the respective distributions. The distributions become more peaked 
and symmetric when the space dimension d grows, especially for small values of the length 
of the random walk. in agreement with the analytic results that can be obtained in the limit 
d >> s, discussed in section 2. 

In the case of random walks of large length (s >> d), the shape of the distributions 
does not depend significantly on s. This implies that the relative fluctuations (ratio between 
standard deviation and mean value) of the corresponding magnitudes do not vary-and 
therefore do not go to zero-in the limit of very large lengths. This fact leads to the 
conclusion that the mean values of any related quantity cannot be considered complete 
descriptors of the shapes of a given set of random walks. For the mean values to be useful 
by themselves, the existence of a ‘thermodynamical’ limit for the system is necessary (such 
a limit exists when fluctuations go to zero for very large sizes of the system). 

This conclusion applies not only to the variables studied here but also to other 
magnitudes commonly introduced to describe the shape of random walks, i.e. inertia moment 
ratios, etc [3,7]. 

The analysis of the probability distributions for the principal inertia moments shows that 
they can be fitted to chi-squared distributions (equation (31)). These distributions approach 
asymptotically the distribution of (22) [6]  in the limit d >> s >> 1, and when the moment 
label k of hr is not large (k <( r ,  r = min(d, s)). When these conditions are not verified, 
distributions (31) and (22) may differ significantly (see section 3.1). 

We also studied the probability distributions for A and 0, finding that both magnitudes 
present, in most of the considered cases, wide distributions with non-zero skewness, 
especially for low values of d .  For large d the distributions become more peaked around a 
certain value, which corresponds to the limit for d --f 00 discussed in section 2. For fixed 
s, the corresponding standard deviations diminish in the form of (35) when d grows. 

We used the probability distribution (31) to build the combined probability distribution 
for the entire set of non-vanishing inertia moments A,, . . . ,A,, and by means of an auxiliary 
Monte Carlo process we evaluated the probability distribution for the asphericity and 
compared it with the results of our simulations. There is an acceptable concordance between 
both distributions in all the cases considered, with the exceptions of the cases with very 
low d (d = 2,3), and d = 30, s = 10. One of the reasons for such disagreements 
is that the independence hypothesis assumed when constructing the combined probability 
distribution for the entire set, A t ,  , . .,A,, of non-vanishing inertia moments (equation (27)), 
is not verified exactly, especially for low values of d (see section 3.2). 

Finally, it is worthwhile mentioning that it will be interesting to perform the analytic 
counterpart of this mainly numerical analysis. There are many results in our paper which 
prompt analytic calculations. For example, evaluation of parameters ( ~ k  and uk in distribution 
(31), corrections to this distribution to fit the true one, analysis of combined probability 
distributions, etc. We leave this for a future publication. 



Study of the shape of random walks 7033 

Acknowledgments 

We are indebted to L N Epele, C A Garcia Canal and H Fanchiotti for useful discussions 
and suggestions. We are also indebted to J L Alessandrini for letting us know about many 
of the references and for useful hints. Finally, we are grateful to Fundaci6n Antorchns 
of Argentina for its help. This work was partially supported by the Consejo Nacional de 
Investigaciones Cientificas y Ticnicas of Argentina. 

Appendix. The asphericity in the d = 2 case 

The asphericity (12) of two-dimensional objects is given by 

Then, if Q@I,  1 2 )  is the combined probability distribution of the eigenvalues A I  and 1 2 ,  

the probability distribution of A is given by (see equation (26)) 

P ~ ( x ) = L ~ d h i  lmdhz6(x-A)Q(hi ,hz)  O < X <  1 .  (A2) 

The integral in h2 can be evaluated after taking into account that 

In our case, the equation x - A&, At) = 0 possesses two solutions, namely 

The derivative aA/ahz at these points is given by 

Then, using (A3) and (A5). the properties of the 6 distribution, and defining 

one can write (A2) as follows: 

When the constraint (36) is in effect, and as 0 < p ( x )  < 1 for all x in [0, I], the first term 
in the integrand is zero. Consequently, in this case PA reduces to 

On the other hand, if the combined probability distribution Q is of the form (27). 
Q(1,, 1 2 )  = Pl(hl)Pz(hz), equation (A7) must be used to evaluate PA(x).  If PI and P2 are 
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given by (31), the resulting distribution can be evaluated straightforwardly. In fact, from 
(31), 

The integral can be easily evaluated considering that 

Then, 

As explained in section 3.2, this distribution separates signific 
especially for small values of x .  

tly from the le one, 
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